Search results for " LIGANDS"

showing 10 items of 196 documents

The Taming of Redox‐Labile Phosphidotitanocene Cations

2019

International audience; Tame d0 phosphidotitanocene cations stabilized with a pendant tertiary phosphane arm are reported. These compounds were obtained by one-electron oxidation of d1 precursors with [Cp2Fe][BPh4]. The electronic structure of these compounds was studied experimentally (EPR, UV/Vis, and NMR spectroscopy, X-ray diffraction analysis) and through DFT calculations. The theoretical analysis of the bonding situation by using the electron localization function (ELF) shows the presence of π-interactions between the phosphido ligand and Ti in the d0 complexes, whereas dπ–pπ repulsion prevents such interactions in the d1 complexes. In addition, CH–π interactions were observed in seve…

010402 general chemistry01 natural sciencesRedoxTransition metal phosphidesCatalysisFrustrated Lewis pairlaw.inventionchemistry.chemical_compoundFrustrated Lewis Pair (FLP)[CHIM.ANAL]Chemical Sciences/Analytical chemistrylaw[CHIM.COOR]Chemical Sciences/Coordination chemistryPhosphorus LigandsElectron paramagnetic resonanceDiphenylacetyleneComputingMilieux_MISCELLANEOUSTitanium[CHIM.ORGA]Chemical Sciences/Organic chemistry010405 organic chemistryLigandOrganic Chemistry[CHIM.MATE]Chemical Sciences/Material chemistryGeneral ChemistryNuclear magnetic resonance spectroscopyElectron localization function0104 chemical sciencesHomolysis[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryDensity Functional Theory (DFT)Crystallographychemistry[CHIM.CHEM]Chemical Sciences/CheminformaticsChemistry – A European Journal
researchProduct

Phosphasalen group IV metal complexes: synthesis, characterization and ring opening polymerization of lactide.

2020

International audience; We report the synthesis of a series of Zr and Ti complexes bearing phosphasalen which differs from salen by the incorporation of two P atoms in the ligand backbone. The reaction of phosphasalen proligands (1a-1c)H2 with Zr(CH2Ph)4 led to different products depending on the nature of the N,N-linker in the ligand. In case of ethylene-linked phosphasalen, octahedral Zr complex 2a formed as a single stereoisomer in trans geometry. With the phenylene linker, it was shown by dynamic NMR spectroscopy that complex 2b exists as a mixture of trans and cis-β isomers in solution, both enantiomers (Δ and Λ) of the cis-β isomer being in fast equilibrium with respect to the NMR tim…

010402 general chemistryLIGANDS SYNTHESIS01 natural sciencesRing-opening polymerizationCoordination complexInorganic ChemistryINDIUM COMPLEXESOctahedral molecular geometry[CHIM]Chemical SciencesSALALEN COMPLEXESCYCLIC ESTERSCOORDINATION CHEMISTRYZIRCONIUM COMPLEXES; COORDINATION CHEMISTRY; SALALEN COMPLEXES; LIGANDS SYNTHESIS; INDIUM COMPLEXES; SALEN LIGANDS; CYCLIC ESTERS; INITIATORS; CATALYSIS; ALUMINUMchemistry.chemical_classification010405 organic chemistryLigandCATALYSISCationic polymerizationNuclear magnetic resonance spectroscopyALUMINUM0104 chemical sciencesCrystallographychemistrySALEN LIGANDSAlkoxy groupINITIATORS[CHIM.OTHE]Chemical Sciences/OtherIsomerizationZIRCONIUM COMPLEXESDalton transactions (Cambridge, England : 2003)
researchProduct

Equipping metallo-supramolecular macrocycles with functional groups: Assemblies of pyridine-substituted urea ligands

2012

A series of di-(m-pyridyl)-urea ligands were prepared and characterized with respect to their conformations by NOESY experiments and crystallography. Methyl substitution in different positions of the pyridine rings provides control over the position of the pyridine N atoms relative to the urea carbonyl group. The ligands were used to self-assemble metallo-supramolecular M(2)L(2) and M(3)L(3) macrocycles which are generated in a finely balanced equilibrium in DMSO and DMF according to DOSY NMR experiments and ESI FTICR mass spectrometry. Again, crystallography was used to characterize the assemblies. Methyl substitution in positions next to the pyridine nitrogen prevents coordination, while …

010405 organic chemistryHydrogen bondChemistryStereochemistrySupramolecular chemistryurea ligands; metallo-supramolecular macrocycles; X-ray structure; hydrogen-bonding010402 general chemistryMass spectrometry01 natural sciencesFourier transform ion cyclotron resonance0104 chemical sciencesInorganic ChemistrySubstituted ureaCrystallographychemistry.chemical_compoundPyridineUreaTwo-dimensional nuclear magnetic resonance spectroscopyta116Dalton Transactions
researchProduct

Combining Amines and 3-(2-Pyridyl)-[1,2,3]Triazolo[1,5-a]pyridine: An Easy Access to New Functional Polynitrogenated Ligands

2019

Triazolopyridine-pyridine amine ligands are easily obtained by means of either thermal- or copper(II)-mediated reactions. Starting from a readily accessible iodo derivative of triazolopyridine-pyridine and different amines, this new family of compounds combines aromatic and aliphatic nitrogen atoms with promising coordinating properties. Furthermore, chemical derivatization of a new triazolopyridine-pyridine diamine compound, N1-[6-([1,2,3]triazolo[1,5-a]pyridin-3-yl)pyridin-2-yl]ethan-1,2-diamine, allows the preparation of several remote-pyridine-containing ligands.

010405 organic chemistryOrganic Chemistrychemistry.chemical_element010402 general chemistry01 natural sciencesNitrogenCopperCombinatorial chemistryCatalysisAmine ligands0104 chemical scienceschemistry.chemical_compoundchemistryDiaminePyridineDerivatizationDerivative (chemistry)Synthesis
researchProduct

The [Pd(bipy)]2+ “merry-go-round”: Insights into the lability of the Pd–N bond

2009

Abstract Two tripods (1 and 2) featuring pyrimidinyl pendant arms have been synthesized from 5-(1H-pyrazol-3-yl)-pyrimidine (5) and 1,3,5-tribromomethylbenzene derivatives. Reaction with three equivalents of [Pd(bipy)](NO3)2 to form a macrotricycle closed by palladium coordination unexpectedly afforded the mononuclear species [Pd(1)(bipy)]2+ and [Pd(2)(bipy)]2+. These complexes show fluxional behavior on the 1H NMR timescale, the [Pd(bipy)]2+ fragment hopping between the pyrimidinyl coordinating moieties. The ΔGc‡’s estimated by the coalescence method are temperature independent, which means that ΔSc‡ = 0. This indicates that the “merry-go-round” process of [Pd(bipy)]2+ occurs intramolecula…

010405 organic chemistryStereochemistryChemistryLabilityGeneral Chemical Engineeringfluxionality[ CHIM.COOR ] Chemical Sciences/Coordination chemistryTemperature independentchemistry.chemical_elementGeneral Chemistry010402 general chemistrypalladium01 natural sciencesMedicinal chemistry0104 chemical scienceschelatesN ligandsNucleophileProton NMRChelation[CHIM.COOR]Chemical Sciences/Coordination chemistryComputingMilieux_MISCELLANEOUStripodal ligandsPalladium
researchProduct

Magneto-structural correlations in asymmetric oxalato-bridged dicopper(II) complexes with polymethyl-substituted pyrazole ligands

2018

Two oxalato-bridged dinuclear copper(II) complexes, [{Cu(Hdmpz)3}2(μ-ox)](ClO4)2·2H2O (1) and [{Cu(Htmpz)3}2(μ-ox)](ClO4)2·2H2O (2) (Hdmpz = 3,5-dimethyl-1H-pyrazole and Htmpz = 3,4,5-trimethyl-1H-pyrazole), have been synthesized and structurally and magnetically characterized. The crystal structures of 1 and 2 consist of asymmetric bis-bidentate μ-oxalatodicopper(II) complex cations with two short [Cu–O = 1.976(2) (1) and 1.973(2) Å (2)] and two long copper–oxygen bonds [Cu–O = 2.122(2) (1) and 2.110(2) Å (2)]. The environment at each CuII ion in 1 and 2 is closer to the trigonal bipyramidal geometry than to the square pyramidal [τ = 0.633 (1) and 0.711 (2)]. The magnetic properties of 1 a…

010405 organic chemistrychemistry.chemical_elementCrystal structurePyrazole ligandsPyrazole010402 general chemistry01 natural sciencesCopperSquare pyramidal molecular geometryAntiferromagnetic coupling0104 chemical sciencesIonCrystallographychemistry.chemical_compoundTrigonal bipyramidal molecular geometrychemistryMaterials ChemistryPhysical and Theoretical Chemistry
researchProduct

NIR-absorbing transition metal complexes with redox-active ligands

2020

Bench top stable transition metal (M = Co, Ni, Cu) complexes with a non-innocent ortho-aminophenol derivative were synthesized by the reaction of metal(II)acetates with a ligand precursor in 2:1 ratio. The solid-state structures reveal the formation of neutral molecular complexes with square planar coordination geometries. The Co(II) and Cu(II) complexes are paramagnetic, whereas the Ni complex is a diamagnetic square planar low-spin Ni(II) complex. All complexes, and Ni(II) complex in particular, show strong absorption in the near-IR region. Peer reviewed

02 engineering and technologymetal complexesredox-active ligands010402 general chemistry01 natural sciencesInorganic ChemistryMetalParamagnetismchemistry.chemical_compoundTransition metalinfrapunasäteilyMaterials ChemistryPhysical and Theoretical Chemistrynear-IR absorptionChemistryLigandnon-innocent ligandsliganditkompleksiyhdisteet021001 nanoscience & nanotechnologyNon-innocent ligand0104 chemical sciences3. Good healthabsorptioCrystallographyvisual_artvisual_art.visual_art_mediumDiamagnetismAbsorption (chemistry)0210 nano-technologyDerivative (chemistry)
researchProduct

Aza-macrocyclic triphenylamine ligands for G-quadruplex recognition

2018

A new series of triphenylamine-based ligands with one (TPA1PY), two (TPA2PY) or three pendant aza-macrocycle(s) (TPA3PY) has been synthesised and studied by means of pH-metric titrations, UV/Vis spectroscopy and fluorescence experiments. The affinity of these ligands for G-quadruplex (G4) DNA and the selectivity they show for G4s over duplex DNA were investigated by Forster resonance energy transfer (FRET) melting assays, fluorimetric titrations and circular dichroism spectroscopy. Interestingly, the interactions of the bi- and especially the tri-branched ligands with G4s lead to a very intense redshifted fluorescence emission band that may be associated with intermolecular aggregation betw…

0301 basic medicineCircular dichroismaggregation-induced emissionChemistry Multidisciplinaryamines010402 general chemistryG-quadruplexTriphenylamine01 natural sciencesCatalysisCIRCULAR-DICHROISM03 medical and health scienceschemistry.chemical_compoundGeneral chemistryfluorescent probestriphenylamine polyaminesMoleculeSpectroscopyFLUORESCENT-PROBESScience & TechnologyG-quadruplexChemistryINTRAMOLECULAR CHARGE-TRANSFERANTICANCER DRUG DESIGNOrganic ChemistryaggregationFORMING REGIONDNAGeneral ChemistryFluorescenceG-quadruplexes0104 chemical sciencesCrystallographyChemistry030104 developmental biologyFörster resonance energy transfer2-PHOTON ABSORPTIONPROMOTER REGIONPhysical SciencesEQUILIBRIUM-CONSTANTSGRAPHENE OXIDE03 Chemical Sciencesmacrocyclic ligands
researchProduct

Differential binding cell-SELEX method to identify cell-specific aptamers using high-throughput sequencing

2018

AbstractAptamers have in recent years emerged as a viable alternative to antibodies. High-throughput sequencing (HTS) has revolutionized aptamer research by increasing the number of reads from a few (using Sanger sequencing) to millions (using an HTS approach). Despite the availability and advantages of HTS compared to Sanger sequencing, there are only 50 aptamer HTS sequencing samples available on public databases. HTS data in aptamer research are primarily used to compare sequence enrichment between subsequent selection cycles. This approach does not take full advantage of HTS because the enrichment of sequences during selection can be due to inefficient negative selection when using live…

0301 basic medicineComputer scienceAptamerlcsh:MedicineGenomicsComputational biologyCell selexLigandsArticleDNA sequencingCell Line03 medical and health sciencessymbols.namesakeNegative selectionDrug Delivery Systems0302 clinical medicineCell Line TumorHumansGenomic librarylcsh:ScienceCarcinoma Renal CellSelection (genetic algorithm)Gene LibrarySanger sequencingMultidisciplinaryMolecular medicinelcsh:RSELEX Aptamer TechniqueHigh-throughput screeningComputational BiologyHigh-Throughput Nucleotide SequencingNucleotide MetabolismGenomicsAptamers NucleotideFlow CytometryMolecular medicineKidney Neoplasms030104 developmental biologyDrug DesignDrug deliverysymbolsNucleic Acid Conformationlcsh:QFunctional genomics030217 neurology & neurosurgerySystematic evolution of ligands by exponential enrichment
researchProduct

Crystal and solution structures of di-n-butyltin(IV) complexes of 5-[(E)-2-(4-methoxyphenyl)-1-diazenyl]quinolin-8-ol and benzoic acid derivatives: E…

2009

Abstract Reactions of nBu2SnCl(L1) (1), where L1 = acid residue of 5-[(E)-2-(4-methoxyphenyl)-1-diazenyl]quinolin-8-ol, with various substituted benzoic acids in refluxing toluene, in the presence of triethylamine, yielded dimeric mixed ligand di-n-butyltin(IV) complexes of composition [nBu2Sn(L1)(L2–6)]2 where L2 = benzene carboxylate (2), L3 = 2-[(E)-2-(2-hydroxy-5-methylphenyl)-1-diazenyl]benzoate (3), L4 = 5-[(E)-2-(4-methylphenyl)-1-diazenyl]-2-hydroxybenzoate (4), L5 = 2-{(E)-4-hydroxy-3-[(E)-4-chlorophenyliminomethyl]-phenyldiazenyl}benzoate (5) and L6 = 2-[(E)-(3-formyl-4-hydroxyphenyl)-diazenyl]benzoate (6). All complexes (1–6) have been characterized by elemental analyses, IR, 1H,…

10120 Department of Chemistry[(E)81303 Biochemistry5DenticityStereochemistry12Crystal structuredinBiochemistrybutyltin(IV) complexes(4Inorganic Chemistrychemistry.chemical_compoundPentagonal bipyramidal molecular geometry540 ChemistryMaterials ChemistryCarboxylatePhysical and Theoretical Chemistry2505 Materials ChemistryCoordination geometryXmixed ligandsol1604 Inorganic ChemistryChemistryCrystal structurebenzoic acidOrganic Chemistry5-[(E)-2-(4-methoxyphenyl)-1- diazenyl]quinolin-8-ol Di-n-butyltin(IV) complexes Benzoic acid Mixed ligands Solution and solid-state tin NMR Crystal structureNuclear magnetic resonance spectroscopysolution and solid state tinNMRBond lengthTrigonal bipyramidal molecular geometryCrystallographydiazenyl]quinolinmethoxyphenyl)Settore CHIM/03 - Chimica Generale E Inorganica1606 Physical and Theoretical Chemistry1605 Organic Chemistry
researchProduct